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Abstract

In order to establish a link between the activation map
and the body surface signals, we want to compute body
potentials from activation maps and a frontlike approxi-
mation of the activation of the heart. To do so, two for-
mulations that map the extracardiac potential from the
transmembrane voltage naturally emerge from the bido-
main model. Either the extracellular/extracardiac poten-
tial solves a Laplace equation with discontinuous conduc-
tivity coefficient and ionic current as a source (Source For-
mulation F1); or the quasi-stationary electrical balance
between the intra- and extracellular fields (Balance For-
mulation F2). In this work, we compare F1 and F2, to
determine which formulation is the most relevant to use.

We compute reference activation map ψ, transmem-
brane voltage v and body surface map u with a bidomain
2D code. We design two alternative shapes ṽ for a frontlike
approximation of v. Afterwards, two extracellular / extrac-
ardiac potentials are computed from the activation time ψ
and ṽ, using the two different formulations. Then the ex-
tracardiac potentials solutions of F1 and F2 are compared
respectively to the solution of the bidomain u.

Results show that the Balance Formulation F2 is robust
to the input data (ṽ and ψ). On the contrary, the Source
Formulation F1 is very unstable and generates very large
errors on the body surface map.

1. Introduction

In the framework of ECGi, we would like to reconstruct
activation maps of the heart directly from torso potentials,
available thanks to multi-electrode vests for example. To
this end, we need to express a direct problem given the ac-
tivation time ψ(x). In particular, we want to deduce the
extracellular and extracardiac potential u directly from ψ.
We choose to model the transmembrane voltage as an acti-
vation front with a predefined shape as in [1–3]. In this
context, the approximate transmembrane voltage writes
ṽ(x, t) = V̄ (t − ψ(x)). Even if its shape is uncertain,
this representation of the transmembrane voltage captures
the global behaviour of the depolarisation front.

Then, the extracellular and extracardiac potential is ex-
pressed as a solution of a partial differential equation with
a source term that depends on V̄ , ψ, and the formulation of
the operator [ṽ −→ u]. This operator is derived from the
bidomain equations that follow. In a heart (ΩH ) embedded
in a torso (ΩT ) geometry, the bidomain model is given by

div(σi∇ui) = ∂tv + Iion(v) in ΩH ,

div(σe∇u) = −∂tv − Iion(v) in ΩH ,

div(σT∇u) = 0 in ΩT ,

σi∇(u+ v) · n = 0 on ∂ΩH ,

σT∇u · n = 0 on ∂ΩT ,

(1)

with ui ∈ H1(ΩH), u ∈ H1(ΩH ∪ ΩT ) the intracellu-
lar and extracellular / extracardiac potentials respectively,
v = ui − u ∈ ΩH the transmembrane voltage, and
σi, σe, σT the conductivities respectively in the cardiac
intracellular medium, cardiac extracellular medium and
torso medium. They are scaled to use nondimensionnal
terms. The ionic current, Iion is a non-linear (often cubic)
function of v and other variables that depend on the ionic
model chosen. Equivalently, the volumic equations in the
heart can write

div(σi∇(u+ v)) = ∂tv + Iion(v) in ΩH ,

div((σi + σe)∇u) = −div(σi∇v) in ΩH .
(2)

This version is more widely used in the literature. In these
two equivalent formulations of the bidomain we see two
equations modelling the dependency between u and v:

− div (σe∇u) = ∂tv + f(v) in ΩH ,

− div (σT∇u) = 0 in ΩT ;
(F1)

and

− div (σe∇u)− div (σi∇(u+ v)) = 0 in ΩH ,

− div (σT∇u) = 0 in ΩT .
(F2)

Thus, (F1) and (F2) can be seen as two independent prob-
lems which data is v and that define two mappings of
[ṽ −→ u], taking v = ṽ. Either u solves a Laplace equa-
tion with discontinuous conductivity coefficients (heart
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and torso) and a nonlinear source (Source Formulation
(F1)), or it solves the quasi-stationary electrical balance
between the intra and extracellular fields (Balance Formu-
lation (F2)). Commonly, the potential u is computed from
the Balance Formulation (F2). Anyway, we may also use
(F1), that has the advantage of not including any coupling
on the heart boundary, and which differential operator is
naturally shaped for the coupled heart/torso problem. Note
that if v solves the complete bidomain equations, the two
formulations are equivalent. However, as soon as v differs
from the bidomain solution, (F1) and (F2) are no longer
equivalent. In this study, we compare the solutions of the
two formulations (u1 for (F1) and u2 for (F2)) evaluated
in ṽ(x, t) = V̄ (t− ψ(x)), with the bidomain solution (de-
noted by the index ref). We also investigate the robustness
of those two formulations to small variations in the trans-
membrane voltage and the activation time.

2. Method

2.1. Reference solution and activation map

Let (uref, vref) be the couple solution of the bidomain
with the Mitchell-Shaeffer [4] model for the ionic poten-
tial, given by

∂tv =
1

τin
hv2(1− v)− v

τout
,

∂th =


1− h

τopen
is v < vgate,

−v
τclose

otherwise.

(3)

Concerning the numerical schemes, the 2D Discrete Du-
ality Finite Volume (DDFV) [5] scheme was used for the
space discretization and an order 2 Semi-implicit Back-
ward Discretization scheme (SBDF2) for the temporal dis-
cretization. Thus, in the bidomain code, the term ∂tv +
f(v) is approached by

1

dt

(
1.5vn − 2vn−1 + 0.5vn−2

)
+ 2f(vn−1, hn−1)− f(vn−2, hn−2), (4)

for a time step dt > 0. Two 2D meshes were used, an
artificial mesh of a circular heart in a circular torso, and
a 2D slice of a segmentation of a patient’s ventricle and
torso.

The activation map of the heart was computed as a
piecewise affine function given by its values ψi at each
node xi of the mesh (example Figure 3). The time ψi(xi)
is defined as the fist time at which t −→ v(xi) crosses a
threshold. This threshold is set at 0.5, as in the Mitchell-
Shaeffer model v takes values between 0 and 0.95. To find
ψi at each xi, the functions t −→ v(xi) are interpolated
by cubic splines.

2.2. Numerical resolution of the two ap-
proached formulations

The equations (F1) and (F2) being static, we used again
a 2D DDFV spatial scheme for the resolution and the dis-
cretization. Two predefined shapes V̄ were designed. The
first one is a Heaviside front, smoothed such that the right-
hand sides (RHS) of the two formulations ∂tṽ + f(ṽ) and
−div(σi∇ṽ) are L2 regular. The second one is the front
obtained by solving the 0D Mitchell-Shaeffer problem,
with a C∞ initial stimulation. For the formulation (F2),
the RHS is computed by applying a DDFV scheme to the
chosen form of ṽ. For the source formulation (F1), the tem-
poral derivative term is either explicitly given, ∂tṽ = V̄ ′,
either derived numerically as in (4). In the Source Formu-
lation (F1), the ionic term is a cubic function of v.

2.2.1. Choice and computation of the front V̄

In the first case, V̄ is a smoothed Heaviside function de-
pending on a front duration parameter ε, specifically, ṽ =
vε(x, t) = H̃ε(t− ψ(x)). To fulfill the constraint of a H1

regularity for the solution of (F1), we imposed H̃ε(x) = 0
for x < −ε, H̃ε(x) = 0.94 for x > ε and H̃ε(x) = g in
between (|x| ≤ ε), with g(x) = 0.94

( −1
4ε3x

3 + 3
4εx+ 1

2

)
.

Both vε and its temporal derivative are then analytically
known.

For the 0D Mitchell-Shaeffer front (MS0D), the
Mitchell-Shaeffer model was solved in 0D, using classical
python integration tools, on a time range of 330 ms (AP
duration). Then, a cubic spline interpolation from python
scipy library was used to compute a model for ṽ callable at
all times. The time scale was translated to center ṽ on the
activation time.

2.2.2. Computation of the ionic term

In the Mitchell-Shaeffer model, for an ideal propaga-
tion, h = 1 on the activation front. Then the Mistchell-
Shaeffer fonction fMS becomes fMS(v) =

v2(1−v)
τin

− v
τout

,
with τin = 0.3 and τout = 6 as in the original paper
[4]. Denoting fref(v) the bidomain ionic term, we com-
pared fMS to a cubic polynomial interpolation of vref −→
fref(vref) denoted fint. Several random points xk of the
heart mesh were selected, and a least-square minimization
was realised to find v(xk) −→ fint(v(xk)) under the con-
straint that 0 and 0.94 are zeros of the function. This means
that two coefficients were left to find: the dominant coeffi-
cient and the third root. For all points xk, the interpolated
coefficients found were close to each other. Thus we took
their mean value for designing the function fint(v). As il-
lustrated on one mesh point in Figure 1 the fint function fits
better the reference curve fref(vref) than fMS and was thus
chosen for the following.
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Figure 1. Comparison between fMS in green and fint in
red, as functions of v. The stars are the reference values
fref(v) obtained by the bidomain propagation.

3. Results

3.1. Verification of the resolution of the two
formulations

To verify the resolution, we substituted vref in both for-
mulations. For the formulation (F1), the RHS is computed
with (4). u1 and u2 are expected to match exactly the ref-
erence uref. In practice, the differences are ≈ 10−13 due to
numerical errors. However, the result u1 is very sensitive
to small errors in the RHS. For instance, if we replace for-
mula (4) by another discretization scheme of same order,

the errors
∥u1−uref∥L2(ΩT )

∥uref∥L2(ΩT )
jump to an order 10−2 or even

10−1, as presented in Tables 1 and 2 for the circular mesh.

Table 1. Relative L2(ΩT ) errors for the solution of (F1)
when changing f in (4).

Ionic term
∥u1−uref∥L2(ΩT )

∥uref∥L2(ΩT )

fref (vref) (reference) 1.5E-13
fint (vref(t

n)) 8.1E-01
fMS (h(t

n), vref(t
n)) 4.4E-02

These results anticipated mediocre performances for (F1)

Table 2. Relative L2(ΩT ) errors for the solution of (F1)
when changing ∂tv in (4).

Discrete derivative scheme
∥u1−uref∥L2(ΩT )

∥uref∥L2(ΩT )

SBDF2 (reference) 1.5E-13
Euler centered 2.5E-02
Explicit Euler 4.3E-01

in case of a pre-shaped front, the source term being very

Figure 2. Bidomain solution uref on the left, and u1 so-
lution of (F1) on the right for ∂tv = ∂tvref and f(v) =
fint (vref(t

n)) in (4) (line 2 of Table 1).

sensitive to small variations, and relying on a balance be-
tween the transmembrane voltage time derivative and the
ionic term. Figure 2 illustrates this observation.

3.2. Analysis of the effects of the formula-
tion

Figure 3. Activation times computed from the bidomain
propagation.

In the following, v is substituted by ṽ = vε or the MS0D
front. The relative differences between u1 and uref and u2
and uref are presented in Figure 4. Accordingly to the pre-
vious results, (F1) generates huge errors, thus cannot be
used in computations. On the contrary, (F2) seems robust
and generates less than 10% of difference for all the tested
ṽ. For parameter ε between 0.5 and 5 for vε, the errors
are lower than the ones obtained with the MS0D model.
We can also notice that there exist an optimal ε0 parameter

that minimizes the difference
||u2−uref||L1(∂ΩT ×(0,T ))

||uref||L1(∂ΩT ×(0,T ))
. Any-

way, if we look at the difference in space only, ε0 slightly
depends on time.

3.3. First sensitivity analysis

Focusing on (F2), a white noise perturbation w was
added to the RHS of the equation. Four noisy trans-
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Figure 4. Relative differences between u1 (red), u2 (blue)
and uref respectively, and ṽ and vref (black). ṽ may be the
MS0D model (horizontal dashed lines), or vε with varying
duration parameter ε (points).

membrane voltages were designed: ṽ = vref + w(x),
ṽ = vε + w(x), ṽ = Hε(t − ψ(x) + w(x)) and ṽ =
Hε(t − ψ(x) + w0), where w0 is a scalar. The last case
represent a displacement of the whole activation front line,
as it would be if the initial activation site were uncertain.
For the % of noise on the activation time, a reference am-
plitude was needed. Denoting p the position of the stim-
ulation site, we allow p + ∆p to be located in all septum.
Then ∆t = ∆p

c with c the mean speed of the activation
front in the septum. Surprisingly, the chart Figure 5 shows
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Figure 5. Relative difference between u2 and uref on the
torso at time t = 35 ms for 5000 realisations of white noise
w. ε = 2.5.

no significant difference between the solutions of (F2) with
ṽ = vref + w and ṽ = vε + w, confirming again the va-
lidity of using (F2) in future computations. Moreover, the

formulation does not appear to be very sensitive to small
noise in the stimulation site. In this case, the errors are sig-
nificantly inferior to raw gaussian noise on the activation
time.

4. Discussion and Conclusion

Our results point out clearly that the Source Formula-
tion (F1) cannot be used for propagating u from v. Even
with very accurate entries, the body surface potential map
is no longer preserved. This emphasizes the underlying
equilibrium existing between the ionic term and v. On the
contrary, the Balance Formulation allows to correctly re-
cover body surface potentials even with a simple preshaped
transmembrane potential or with noise.
It would be interesting to push further this study in 3D.
Moreover, a real sensitivity analysis of u2 as function of ψ
would be very useful. In future work, we could also study
the sensitivity of formulation (F2) to heterogeneities in the
heart conductivity.
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